Robust fault detection using consistency techniques with application to an automotive engine

نویسندگان

  • Esteban R. Gelso
  • Erik Frisk
  • Joaquim Armengol
چکیده

Monitoring of the air intake system of an automotive engine is important to meet emission related legislative diagnosis requirements. In this paper, the problem of fault detection in the air intake system is stated as a constraint satisfaction problem over continuous domains with a big number of variables and constraints. This problem can be solved using Consistency Techniques. Consistency techniques are shown to be particularly efficient for checking the consistency of the Analytical Redundancy Relations (ARRs), dealing with uncertain measurements and parameters, and using experimental data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks

Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...

متن کامل

A Robust Iterative Learning Observer-based Fault Diagnosis of Time Delay Nonlinear Systems

An Iterative Learning Observer (ILO) updated successively and iteratively by immediate past system output error and ILO input is proposed for a class of time-delay nonlinear systems for the purpose of robust fault diagnosis. The proposed observer can estimate the system state as well as disturbances and actuator faults so that ILO can still track the post-fault system. In addition, the observer...

متن کامل

Fault Detection and Identification of Automotive Engines Using Neural Networks

Fault detection and isolation (FDI) in dynamic data from an automotive engine air path using artificial neural networks is investigated. A generic SI mean value engine model is used for experimentation. Several faults are considered, including leakage, EGR valve and sensor faults, with different fault intensities. RBF neural networks are trained to detect and diagnose the faults, and also to in...

متن کامل

Application of a data-driven monitoring technique to diagnose air leaks in an automotive diesel engine: a case study

This paper presents a case study of the application of a data-driven monitoring technique to diagnose air leaks in an automotive diesel engine. Using measurement signals taken from the sensors/actuators which are present in a modern automotive vehicle, a data-driven diagnostic model is built for condition monitoring purposes. Detailed investigations have shown that measured signals taken from t...

متن کامل

Identification and Robust Fault Detection of Industrial Gas Turbine Prototype Using LLNF Model

In this study, detection and identification of common faults in industrial gas turbines is investigated. We propose a model-based robust fault detection(FD) method based on multiple models. For residual generation a bank of Local Linear Neuro-Fuzzy (LLNF) models is used. Moreover, in fault detection step, a passive approach based on adaptive threshold is employed. To achieve this purpose, the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008